Sorafenib hepatobiliary disposition: mechanisms of hepatic uptake and disposition of generated metabolites.
نویسندگان
چکیده
Sorafenib is an orally active tyrosine kinase inhibitor used in the treatment of renal and hepatocellular carcinoma. This study was designed to establish whether transport proteins are involved in the hepatic uptake of sorafenib and to determine the extent of biliary excretion of sorafenib and its metabolites in human hepatocytes. Initial uptake was assessed in freshly isolated, suspended human hepatocytes in the presence of inhibitors and modulators. [(14)C]Sorafenib (1 µM) uptake at 4°C was reduced by about 61-63% of the uptake at 37°C, suggesting a high degree of passive diffusion. Hepatocyte uptake of [(14)C]sorafenib was not Na(+) dependent or influenced by the organic anion transporter 2 inhibitor ketoprofen. However, initial [(14)C]sorafenib hepatocyte uptake was reduced by 46 and 30% compared with control values in the presence of the organic anion transporting polypeptide inhibitor rifamycin SV and the organic cation transporter (OCT) inhibitor decynium 22, respectively. [(14)C]Sorafenib (0.5-5 µM) uptake was significantly higher in hOCT1-transfected Chinese hamster ovary cells compared with mock cells, and inhibited by the general OCT inhibitor, 1-methyl-4-phenylpryidinium. OCT1-mediated uptake was saturable with a Michaelis-Menten constant of 3.80 ± 2.53 µM and a V(max) of 116 ± 42 pmol/mg/min. The biliary excretion index and in vitro biliary clearance of sorafenib (1 µM) in sandwich-cultured human hepatocytes were low (∼11% and 11 ml/min/kg, respectively). Results suggest that sorafenib uptake in human hepatocytes occurs via passive diffusion, by OCT1, and by organic anion transporting polypeptide(s). Sorafenib undergoes modest biliary excretion, predominantly as a glucuronide conjugate(s).
منابع مشابه
Probenecid-associated Alterations in Valproic Acid Pharmacokinetics in Rats: Can in Vivo Disposition of Valproate Glucuronide Be Predicted from in Vitro Formation Data?
Previous investigations have suggested that probenecid (PRB) alters the in vivo disposition of valproic acid (VPA), perhaps by inhibiting hepatic formation of valproate glucuronide (VG). Because VPA and PRB bind moderately to plasma proteins, protein binding also is a potential locus of interaction. The purpose of this investigation was to determine whether in vitro systems could accurately pre...
متن کاملHepatobiliary disposition of a drug/metabolite pair: Comprehensive pharmacokinetic modeling in sandwich-cultured rat hepatocytes.
The hepatobiliary disposition of xenobiotics may involve passive and/or active uptake, metabolism by cytochromes P450, and excretion of the parent compound and/or metabolite(s) into bile. Although in vitro systems have been used to evaluate these individual processes discretely, mechanistic in vitro studies of the sequential processes of uptake, metabolism, and biliary or basolateral excretion ...
متن کاملSex-dependent disposition of acetaminophen sulfate and glucuronide in the in situ perfused mouse liver.
Breast cancer resistance protein (BCRP, ABCG2) is expressed in the hepatic canalicular membrane and mediates biliary excretion of xenobiotics including sulfate and glucuronide metabolites of some compounds. Hepatic Bcrp expression is sex-dependent, with higher expression in male mice. The hypothesis that sex-dependent Bcrp expression influences the hepatobiliary disposition of phase II metaboli...
متن کاملMultiple transport systems mediate the hepatic uptake and biliary excretion of the metabolically stable opioid peptide [D-penicillamine2,5]enkephalin.
Rapid and extensive biliary excretion of [D-penicillamine2,5]enkephalin (DPDPE) in rats as the unchanged peptide suggests that multiple transport proteins may be involved in the hepatobiliary disposition of this zwitterionic peptide. Although DPDPE is a P-glycoprotein substrate, the role of other transport proteins in the hepatic clearance of DPDPE has not been established. Furthermore, the abi...
متن کاملThe hepatobiliary disposition of timosaponin b2 is highly dependent on influx/efflux transporters but not metabolism.
The purpose of this study was to characterize the hepatobiliary disposition of timosaponin B2 (TB-2), a natural saponin. Although TB-2 has multiple pharmacologic activities, the mechanism of its hepatobiliary disposition has not been explored. Because the metabolism of TB-2 is limited and the accumulation of TB-2 in primary hepatocytes is highly temperature dependent (93% of its accumulation is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 41 6 شماره
صفحات -
تاریخ انتشار 2013